

MINE EXPLORATION

Posse Project

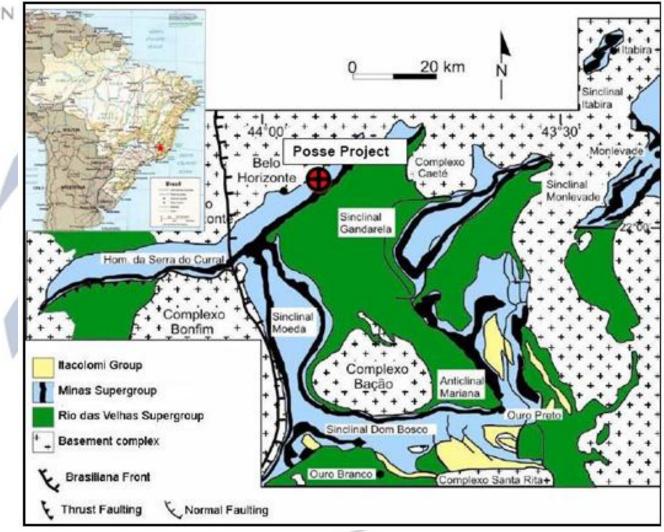
This presentation was based on a report that complies with disclosure and reporting requirements set forth in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' of December 2004 (the JORC Code) as prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Mineral Council of Australia (JORC).

Location

607449 620656 633863 647070 Jaboticatubas Itabira 28 Taguaraçu de Minas Nova União Bom Jesus do Amparo 78 (6451 7818461 Vespasiano Santa Luzia Ribeirão das Neves Barão de Codais BR.381 7803210 7803210 Caeté Sabará Belo Horizonte Contagem Barão de Cocais Raposos 77 87 96 9 77 87 96 9 Nova Lima Ibirité Santa Bárbara Rio Acima Brumadinho 607449 633863 647070 620656 Legenda: BR-381 Requerimento 7 500 15 000 Belo Horizonte Caeté Sabará Datum: BAD 69 - Zona 235

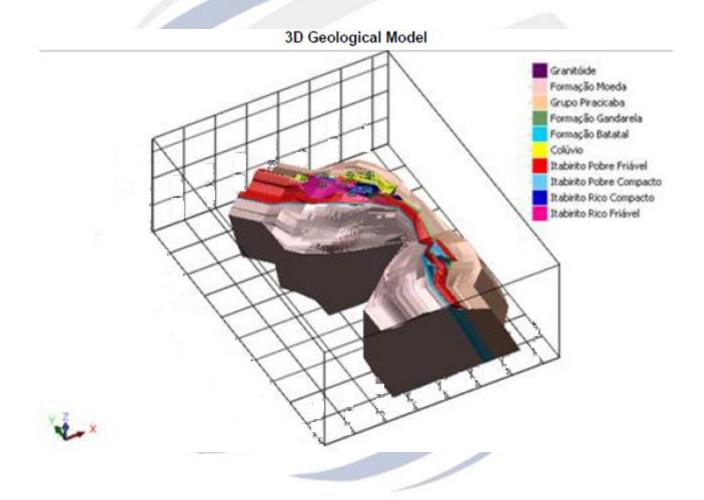
Belo Horizonte – Brazil www.cme7.com.br

The Posse iron ore deposit is located approximately 30 km from Belo Horizonte in the Caeté region of Minas Gerais state, Brazil.



Geology

The Posse Project is situated on Quadrilátero Ferrífero of the Craton São Francisco (Almeida, 1977), Minas Supergroup. The main iron ore deposits in the Quadrilátero are located in the Cauê Formation. It is composed of metamorphosed Banded Iron Formation (BIF) referred to as Itabirite. The Posse itabirite is composed of compact rich itabirite (IRC), compact low grade itabirite (IPC), friable rich itabirite (IRF) and friable poor itabirite (IPF).



The drilled section of the mineralization is approximately 300 m long, has a horizontal width of up to 80 m and is over 100 m deep. This section corresponds to the northern limb of a antiform fold, delineated within the itabirite layer. Overall, the dip of the fold axes is 45° to 60° to the northeast.

Brief History

Evidence of previous mining activities is present in the Posse Project area. According to local residents, nearby road construction companies exploited the near surface itabirite to use as road basement.

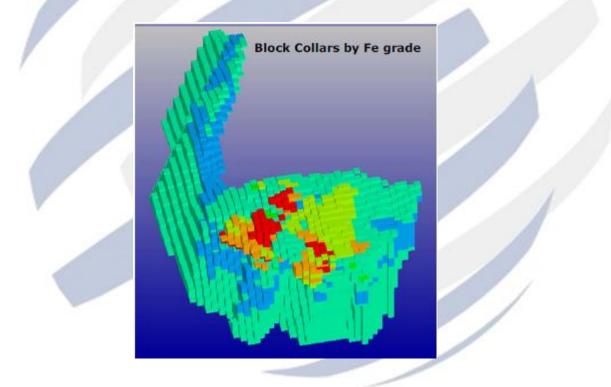
The Resource Data

Lithology	Attribute	Mean	Variance	Std. Dev.	CV	Conut	Minimum	Maximum
	Fe (%)	41.65	27.16	5.21	13%	15	32.10	50.61
	SiO ₂ (%)	38.35	39.24	6.26	16%	15	26.76	46.80
IPC	Al ₂ O ₃ (%)	0.44	0.07	0.26	59%	15	0.18	1.32
IPC	Mn (%)	0.12	0.02	0.13	107%	15	0.02	0.59
	P (%)	0.020	0.000	0.008	34%	15	0.010	0.041
	LOI (%)	0.57	0.29	0.53	94%	15	0.08	2.10
	Fe (%)	42.06	24.55	4.95	12%	70	18.30	51.81
	SiO ₂ (%)	33.99	28.21	5.31	16%	70	21.76	44.59
IPF	Al ₂ O ₃ (%)	2.19	9.39	3.06	140%	70	0.21	16.46
IPT	Mn (%)	0.25	0.10	0.32	130%	70	0.01	1.61
	P (%)	0.020	0.000	0.010	64%	70	0.005	0.060
	LOI (%)	1.70	3.95	1.99	117%	70	0.14	10.84
	Fe (%)	58.54	61.24	7.83	13%	27	42.76	68.50
	SiO ₂ (%)	13.83	114.01	10.68	77%	27	0.94	36.03
IRC	Al ₂ O ₃ (%)	1.22	1.21	1.10	90%	27	0.35	4.96
inc	Mn (%)	0.19	0.06	0.24	130%	27	0.02	1.07
	P (%)	0.020	0.000	0.009	47%	27	0.005	0.043
	LOI (%)	0.72	0.60	0.78	107%	27	0.07	3.19
	Fe (%)	55.14	27.77	5.27	10%	47	33.92	65.43
	SiO ₂ (%)	16.44	59.09	7.69	47%	47	3.10	38.49
IRF	Al ₂ O ₃ (%)	2.11	2.11	1.45	69%	47	0.53	7.04
INF	Mn (%)	0.38	0.24	0.49	127%	47	0.01	2.09
	P (%)	0.01	0.000	0.011	77%	47	0.005	0.057
	LOI (%)	1.53	0.93	0.96	63%	47	0.39	3.80

Mean Analysis - Composite Grades

CONE MINE EXPLORATION

Classification	Analyzed Elements							
	Fe%	\$iO2%	Al ₂ O ₃ %	P%	CaO%	Mn%	LOI %.	
Itabirite with Compact Hematite bands	67.6	2.90	0.76	< 0.01	0.04	0.01	0.43	
Friable Itabirite	42.6	37.90	1.26	< 0.01	0.03	0.01	0.74	
Hematita friável	68.6	2.06	0.40	< 0.01	0.04	0.01	0.30	
Friable Itabirite	58.8	14.30	0.76	< 0.01	0.03	0.34	0.75	
Compact Hematite	68.6	0.96	0.42	0.06	0.13	0.40	0.49	
Compact Hematite	68.3	2.82	0.42	0.01	0.05	0.02	0.22	
Friable Itabirite	48.9	31.30	0.46	< 0.01	0.02	0.04	0.27	
Compact Hematite in contact with dolomite	69.7	0.51	0.39	0.04	0.10	0.15	0.44	
Friable Itabirite	49.6	29.30	0.58	0.01	0.02	0.05	0.43	
Friable Itabirite	40.2	42.70	0.49	< 0.01	0.02	0.05	0.25	
Friable Itabirite	46.9	32.60	0.46	< 0.01	0.05	0.05	0.36	
Compact Hematite	69.0	2.03	0.35	0.04	0.10	0.01	0.18	
Friable hematite in contact with dolomite	68.4	0.57	1.06	< 0.01	0.04	0.14	1.12	
Friable Itabinite	46.3	34.40	0.60	< 0.01	0.03	< 0.01	0.36	
Friable hematite with lens of compact hematite	68.7	1.88	0.50	0.01	0.04	0.02	0.47	
Compact Hematite	69.1	1.88	0.53	0.01	0.05	0.01	0.37	
Friable Itabirite	50.4	27.40	1.12	< 0.01	0.02	0.02	0.68	
Compact Hematite	69.9	0.59	0.45	0.03	0.07	0.01	0.29	
Friable Itabirite	49.2	30.20	0.66	< 0.01	0.02	0.01	0.32	
Compact Hematite	67.6	2.27	0.74	0.04	0.10	< 0.01	0.55	
Compact Hematite	68.3	1.01	0.85	0.03	0.08	0.01	0.70	
Friable Itabirite Rich	68.8	1.81	0.36	0.03	0.04	0.01	0.64	
Friable hematite with lens of compact Itabirite	39.8	43.80	0.37	< 0.01	0.02	0.05	0.63	



Mineralised Zones	Tonnes (Mt)	Fe (%)	SiO ₂ (%)	Al ₂ O ₃ (%)	Mn (%)	P (%)	LOI (%)
IPC	28.47	42.88	36.51	0.47	0.15	0.026	0.64
IPF	5.42	41.82	34.56	1.94	0.27	0.018	1.63
IRC	0.80	57.54	15.36	1.20	0.20	0.020	0.65
IRF	1.34	55.03	16.78	2.15	0.31	0.015	1.47
Total	36.02	43.50	35.02	0.77	0.18	0.024	0.82

The total Resource has been estimated at 36.02 Mt with average grade of 43.5% Fe.

A 3D block model was constructed for resource estimation purposes, based on a 50mE x 50mN x 10mRL (east x north x RL) parent block size and 12.5mE x 12.5mN x 5mRL (east x north x RL) minimum block size:

Volumetric Block Model Validation

Materials	Vol. Wireframes (Mm3)	Vol. Block Model (Mm3)	Comparison	
Formação Moeda	39.40	41.20	95.6%	
Formação Batatal	1.96	1.85	106.0%	
Formação Gandarela	3.02	2.74	110.4%	
Grupo Piracicaba	13.18	12.52	105.3%	
Granitóide	1.17	1.11	105.4%	
Colúvio	0.04	0.05	92.3%	
Sub-Total Waste	58.78	59.46	98.9%	
IPC	9.88	9.85	100.4%	
IPF	3.24	3.08	105.2%	
IRC	0.26	0.23	109.9%	
IRF	0.59	0.59	99.9%	
Sub-Total Mineralization	13.97	13.75	101.6%	
Total	72.75	73.21	99.4%	

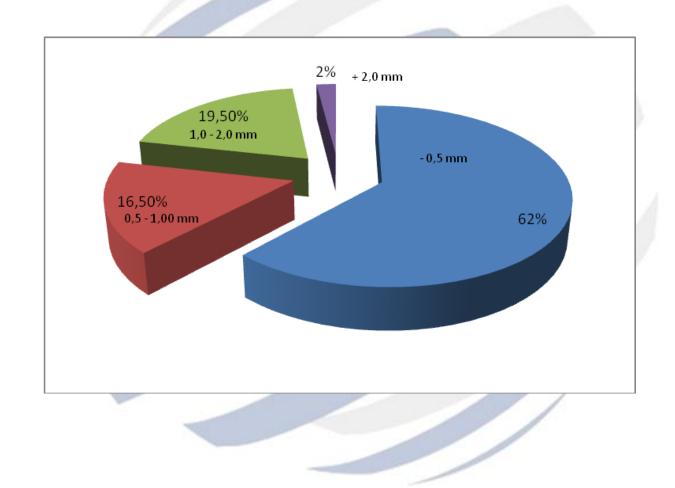
The Posse iron project represents a relatively small-medium scale but prospective iron ore deposit.

Concentration Tests

Magnetic Separation

The equipment used on these tests is the G340 – MINIMAG. It has the same operational characteristics of the larger size equipments, what allows high reliability projections.

With the results it was observed the existence of magnetite in the iron ore.



The first phase of these test consist on the magnetic separation using a LIMS with the objective of removing the magnetite from the fraction (- 2mm) of the material. Obtaining the following products:

- NPO +12,7mm -15,8mm
- Hematitinha +6,3mm -12,7mm
- Sinterfeed +2,0mm -6,3mm
- Dewatered Magnetic Concetrated -2,0mm
- Dewatered Reject -2,0mm

Granulometry Partition – First Phase

The non magnetic material (LIMS reject) was sent for tests of high intensity magnetic separation. The second phase is divided in Rougher, Scavenger and Cleaner Stages and used the GX-2000 separator model in an industrial installation. The rejects, considering their iron grade, may recycle following the mass balance.

Analysis Result

C NE MINE EXPLORATION

		-		
2315	2324	2327	2328	2329
Reject	Concentrated	Reject	Reject	Concentrated
CL	RG	RG	SC	SC
18/4/2011	18/4/2011	18/4/2011	18/4/2011	18/4/2011
_	_	_		
58.38	62,82	56.08	44,17	60,41
14,68	7,84	17,96	35,02	12,32
0,79	1,57	0,72	0,59	0,55
0,017	0,014	0,015	0,015	0,014
0,23	0,19	0,20	0,20	0,19
0.64	0.36	0.65	0.81	0,30
	0,50			0,50
	Reject CL 18/4/2011 58,38 14,68 0,79 0,017	Reject Concentrated CL RG 18/4/2011 18/4/2011 18/4/2011 18/4/2011 58,38 62,82 14,68 7,84 0,79 1,57 0,017 0,014 0,23 0,19	Reject Concentrated Reject CL RG RG 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 58,38 62,82 56,08 14,68 7,84 17,96 0,79 1,57 0,72 0,017 0,014 0,015 0,23 0,19 0,20	Reject Concentrated Reject Reject CL RG RG SC 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 18/4/2011 14/68 7,84 17,96 35,02 0,079 1,57 0,72 0,59 0 0,017 0,014 0,015 0,015 0,23 0,19 0,20 0,20 0,20

Number	2330	2331	2332	2333
	Feed	Concentrated	Feed	Reject
	RG	CL	CL	CL
Date	18/4/2011	18/4/2011	18/4/2011	18/4/2011
Fe:	61,33	64,87	62,39	47,72
SiO2:	10,64	6,03	9,66	29,98
AL2O3:	0,82	0,59	0,50	0,75
P:	0,013	0,014	0,013	0,013
Mn:	0,22	0,19	0,19	0,24
PPC:	0,42	0,31	0,19	0,51

The final concentrated on these tests (union of the products of the first and second phase) presented the following grades:

Fe - 63,70% SiO₂ - 7,37%

Under 1mm was considered to be concentrated.

Mining Plans

Avarage Grade								
Products	Mass (t)	Fe (%)	SiO2 (%)	Al2O3 (%)	P (%)	Mn (%)	PPC (%)	
Granulated	441 372	63.41	7.08	1.08	0.019	0.19	0.62	
Sinter Feed Thick	320 649	62.45	7.43	1.38	0.013	0.29	1.14	
Sinter Feed Thin	324 549	58.52	12.23	1.78	0.014	0.45	1.43	
Pellet Feed	449 539	47.88	25.59	2.60	0.018	0.41	1.84	

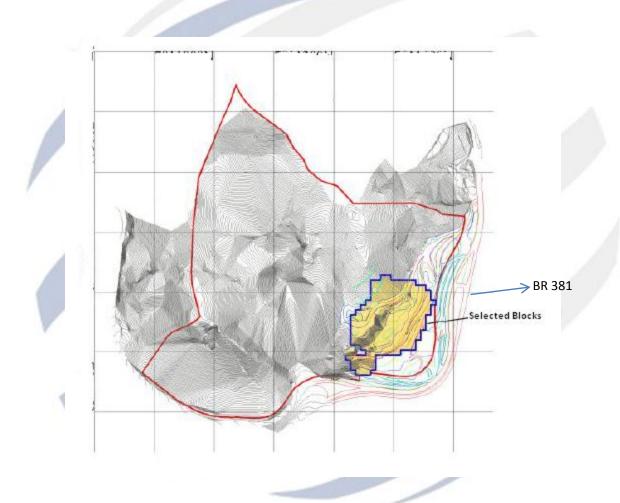
Considering 9.6 Mt of mineable reserve and 300 working days per year, it is indicated as an appropriated anual production the value of 800 kt of ROM and a daily production of 2.8 kt. It would result in 16 years of activity.

Parameters used for the armhole operation

- Bank height 10 m
- Verge Width 7 m (3 firsts periods) and 4 m (Final Situation)
- Face angle 50 degrees
- Ramp width 10 m
- Max ramp inclination 10%

Parameters of the ore and the waste

- Ore Density: 2.6 g/cm³
- Ore Blistering: 30%
- Waste Density: 2.3 g/cm³
- Waste Blistering: 30%


Possible Mining ROM

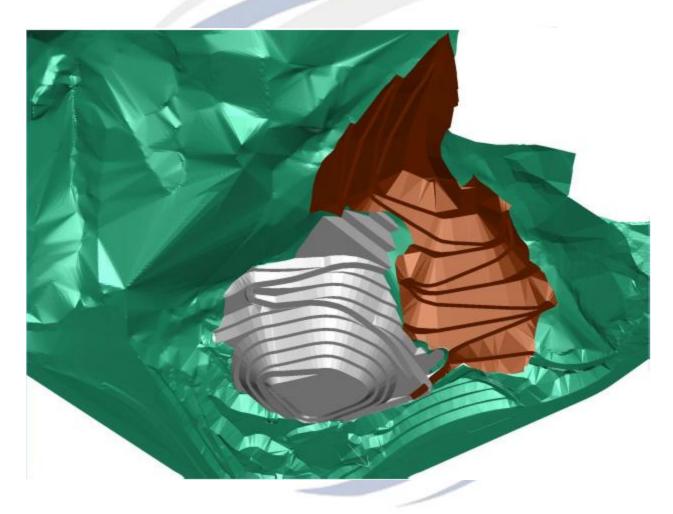
First Month – 30 kt/month Second to Sixth Month – 60 kt/month Seventh to Twelfth Month – 40 kt/month Twelfth to Twenty-Fourth Month – 60 kt/month

It is indicated for the first 3 years a production of 300 ktpa, and for the last 12 years a production of 800 ktpa.

Base Situation

Mining and Waste Dump – First Month

Mining and Waste Dump – Seventh Month



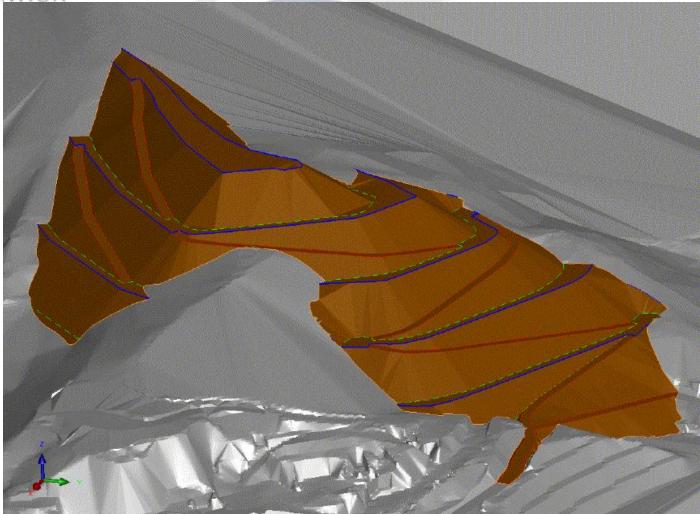
Mining and Waste Dump – Twelfth Month

Mining and Waste Dump – Twenty-Fourth Month

Waste Dump - Final

- Bank height 20m
- Verge Width 5m
- Face angle 35 degrees
- Area 5 hectare
- Volume 525.000m³

Waste Dump - Final


• Periferical canals should be constructed to collect and direct pluvial water. The drainage shall have verges with 2% of inclination in the transverse way, directed for the base of the bank, and 1% directed for the center of the pile to the topography intersection line.

• After the filling of each bank until the final projected form, the verges should be covered with layers of lateritic compacted soil and the slopes between verges should be reforested with appropriate plants.

• To minimize the pluvial water effects, the external limit of each verge shall be protected with stools.

Waste Dump - Final

C NE

Operational and recovery results for the armhole and waste dump

Period Total IRC Ind. 432.969 Ton. IRC Inf. 39.845 Ton. 790.999 IRF Ind. Ton. IRF Inf. Ton. 21.187 Ton. Ore 1.285.000 IPC + 727.671 Ton. IPF Waste Waste 168.801 Ton. Ore Total Franco Waste 896.472 Ton. Total Move 2.181.472 Ton. Total Total REM 0,70 374.334 Granulated Ton. DMT (Ore) 425,0 m DMT (Waste) 341,8 m Fe % 56,61 % 15,08 Quality ROM SiO2 AI2O3 % 1,93 % Ρ 0,017 Mn % 0,20 LOI 1,25 % % 29% Granulated **Recovery Products** % 21% Sinter Thick % 21% Sinter Thin % 30% Pellet Feed

- Physical availability: 80%
- Utilization: 85%
- Truck Capacity: 22 t
- Bulldozer Capacity: 2.5 m³
- Income: 68%
- 26 days per month and 16 hours per day

C NE MINE EXPLORATION

Fleet Sizing – 24th Month

Monthly mass to be moved

This plan results in the mining of 1285 kt Itabirite with the recovery of 29% granulated, 42% thin and thick sinter and 30% Pellet-feed.

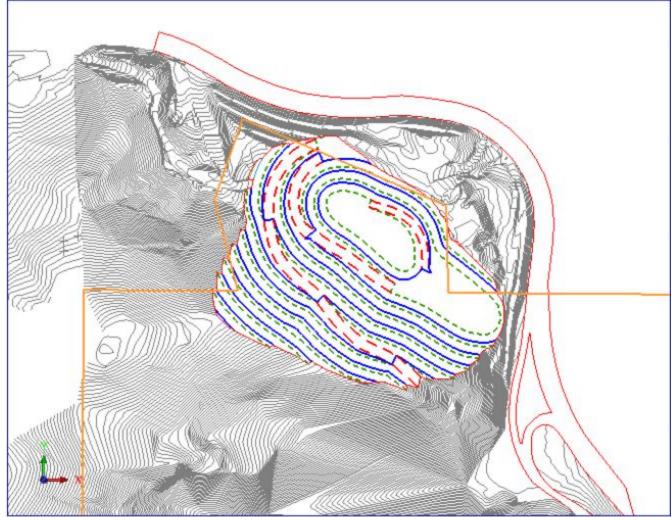
Avarage Distance of Transportation - DMT

		Total	
DMT (Ore)	m	425,0	
DMT (Waste)	m	341,8	

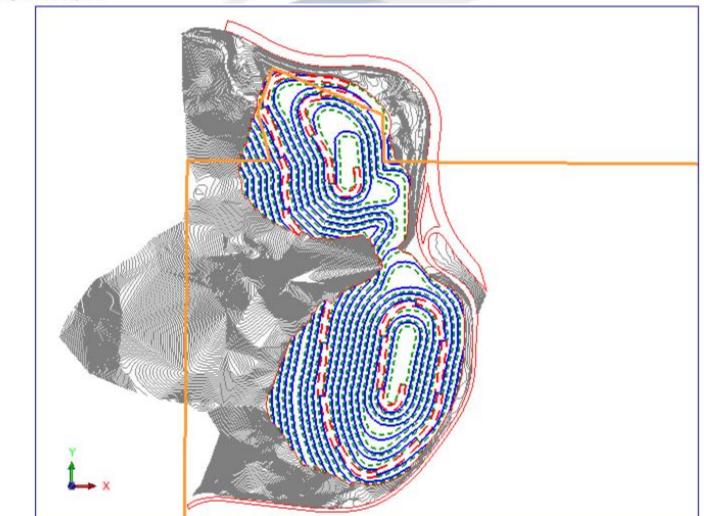
Month	Ore	Waste	Total				
1	32.735	0	32.735				
2	59.078	54.203	113.281				
3	59.078	54.203	113.281				
4	59.078	54.203	113.281				
5	59.078	54.203	113.281				
6	59.078	54.203	113.281				
7	38.681	41.643	80.325				
8	38.681	41.643	80.325				
9	38.681	41.643	80.325				
10	38.681	41.643	80.325				
11	38.681	41.643	80.325				
12	58.728	32.096	90.824				
13	58.728	32.096	90.824				
14	58.728	32.096	90.824				
15	58.728	32.096	90.824				
16	58.728	32.096	90.824				
17	58.728	32.096	90.824				
18	58.728	32.096	90.824				
19	58.728	32.096	90.824				
20	58.728	32.096	90.824				
21	58.728	32.096	90.824				
22	58.728	32.096	90.824				
23	58.728	32.096	90.824				
24	58.728	32.096	90.824				
Total	1.285.000	896.472	2.181.472				

Fleet Sizing – 24th Month

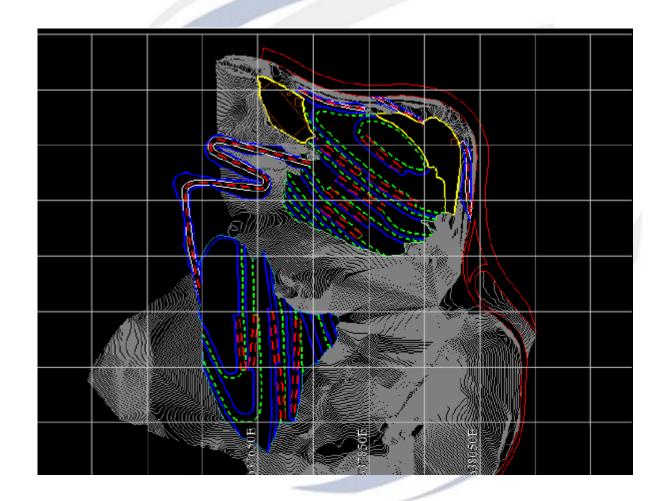
MINE EXPLORATION


NE

rente 01			Ore					Wa	aste		
	Distance (m)	Spe	ed km/h	Time	e (min)	Ton	Distance (m)	Speed km/h		Time (min)	
n	Distance (m)	To go	Return	To go	Return	TON .	Distance (m)	lda	volta	Ida (chelo)	volta
32.735	350	20	26	1,1	0,8	-	0	15	20	-	-
59.078	435	20	26	1,3	1,0	54.203	282	15	20	1,1	0,8
59.078	435	20	26	1,3	1,0	54.203	282	15	20	1,1	0,
59.078	435	20	26	1,3	1,0	54.203	282	15	20	1,1	0,
59.078	435	20	26	1,3	1,0	54.203	282	15	20	1,1	0,
59.078	435	20	26	1,3	1,0	54.203	282	15	20	1,1	0,
38.681	470	20	26	1,4	1,1	41.643	415	15	20	1,7	1,
38.681	470	20	26	1,4	1,1	41.643	415	15	20	1,7	1,
38.681	470	20	26	1,4	1,1	41.643	415	15	20	1,7	1,3
38.681	470	20	26	1,4	1,1	41.643	415	15	20	1,7	1,3
38.681	470	20	26	1,4	1,1	41.643	415	15	20	1,7	1,2
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,0
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,0
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,0
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,
58.728	445	20	26	1,3	1,0	32.096	675	15	20	2,7	2,0
		Bulldozer	Loader	Truck	1						
urs/ i	Ore	283	283	283	I						
onth	Waste	283	283	283	1						
		Manouver	Wait (8)	Manouver	Load	Time (8)	Fixed Time (8)				
ixed Cycle	e Time(s)	Load		Unload (8)	Ore	Waste	Ore	Waste			
		30	40	90	165	157	325	317			
Produc	tion Bulldo:	zer(t/h)	Production	Bulldozer (t/r	nés)						
vre l	30	07			86.901						
Vaste	43	31			121.954						
Produc	tionLoader	(t/h)	Production	Loader (t	/mēs)	1					
		07			86.901	1					
					103.480						
)re Vaste	30 42 tionLoader 3	07 31 (t/h)	Production Production I		86.901 121.954 Imés) 86.901				_		


Mining and Waste Dump – First Three Years

MINE EXPLORATION



Mining and Waste Dump – Final

Operational access road in 3 years

Mineral Processing

• Crushing and Screening Project: It is indicated a plant for the production of granulated and hematitinha in a scale of 600.000 t/year of ROM. The production of thick sinter feed need a special screen of 1 mm.

• Location: It shall be constructed northwest of the final armhole, near the highway, so it will reduce the avarage transport distance. The concentration industry shall be installed in the same location to not be necessary the construction of a tunnel under the highway.

• The available area for the plant is 15000 m².

• The plant must have, at least, for the first three years, the following equipments:

- 1 Vibratory Feeder;
- 1 Jaws Crusher (primary);
- 6 Conveyor Belt;
- 1 Jaws or cone crusher (secundary);
- 1 Inclinated Vibratory Screen;
- 1 Diesel Generator.

Financial

• CAPEX :

- •Acquisition:
 - 300 ktpa: R\$ 5 365 500.00
 - 600 ktpa: R\$ 8 199 500.00
- •Infrastructure: R\$ 1 692 900.00
- •OPEX: Considering that the mine has a small size, the opex using outsourced fleet is quite reduced.
 - Labor: R\$ 1 123 726.80
 - Operational: R\$ 5 586 737.25

Financial

Cash flow:

- Own fleet (first 3 years): R\$ 13 776 998.00
- Outsorced fleet (first 3 years): R\$ 4 989 920

Considering an attractive price of R\$ 73,00/t for the pellet feed, the enterprise would remunerate with about R\$ 30 000 000.00 in present value.

In these indicated values of the finacial plan it is included the construction of a diesel generator and fuel storage for the energy supply of the first three years.

Financial

Mining cost for ore and waste: R\$ 5/t Mineral processing cost (crushing): R\$ 11/t Products' sell price: R\$ 100/t for granulated, R\$ 65/t for thick sinter. Mining recovery: 100%

Logistic

The area already has all the transportation infrastructure. The only roads and access that need to be constructed are those for the transport of ore and waste from the mine to the waste dump and to the mineral processing plant.

AINE EVDIODATION

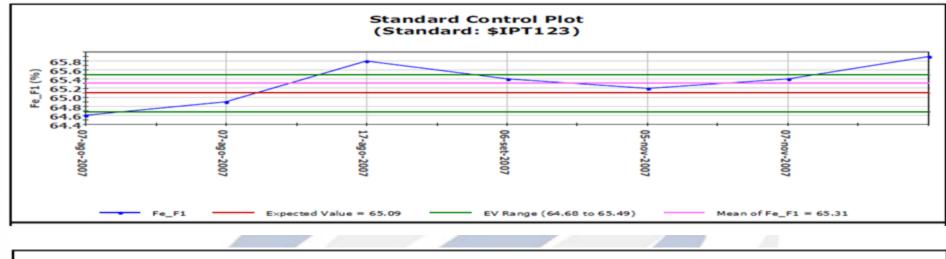
Standard Results – Fe (%)

Std. Order		Fraction Size F1		Fraction Size F2		Fraction Size F3		Fraction Size F4	
Siu.	Order	Fe ₂ O ₃	Fe						
\$IPT123	7/8/2007	92.70	64.90	92.90	65.00	93.60	65.50	93.40	65.40
\$IPT123	7/8/2007	93.50	65.40	93.50	65.40	93.60	65.40	93.70	65.50
\$IPT123	17/8/2007	94.10	65.80	93.80	65.60	93.00	65.10	93.90	65.70
\$IPT123	6/9/2007	92.40	64.60	93.00	65.10	93.50	65.40	93.20	65.20
\$IPT123	5/11/2007	93.20	65.20	93.10	65.10	92.80	64.90	92.90	65.00
\$IPT123	7/11/2007	93.60	65.40	93.10	65.10	92.80	64.90	92.80	64.90
\$IPT123	22/11/2007	94.20	65.90	93.40	65.30	93.00	65.00	92.40	64.60

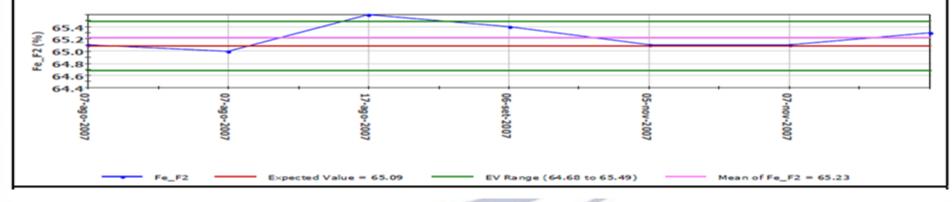
Fraction Size 1 (> 8.0mm)

below summarises the standard utilised by SGS.

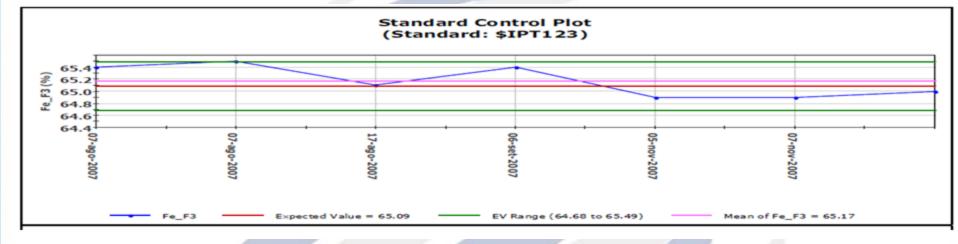
Fraction Size 2 (> 1.0mm and < 8.0mm) Fraction Size 3 (> 0.15mm and < 1.0mm)

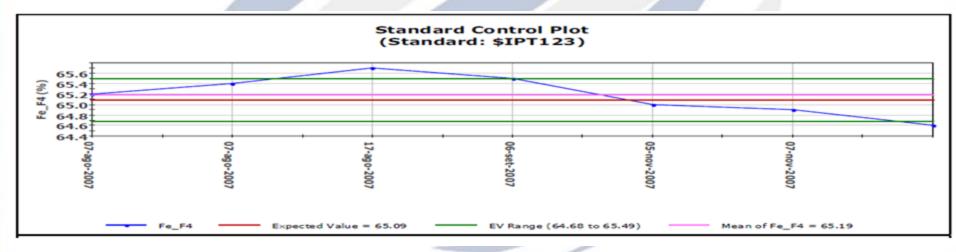

Fraction Size 4 (> 0.15mm)

Standard Details						
Standard	Expected Value	Min	Мах	Text Id	Element	
Fe 9308 123 IPT	93.080002	92.5	93.650002	FeM(XR)	Fe2O3	


Belo Horizonte – Brazil

www.cme7.com.br





Standard Control Plot (Standard: \$IPT123)

Summary of the Access Database	e
Number of Drillholes	11
Number of meters	852.6
Number of Samples (with assay results)	242
Number of Field Duplicate Samples for QAQC	15
Number of Laboratory Duplicate Samples for QAQC	10
Number of Laboratory Replicate Samples for QAQC	10
Number of Standard Samples for QAQC	7
Number of Blank Samples for QAQC	4

QAQC - Quality assurance and quality control.

Local Photos

www.cme7.com.br

Suggestions for Improvements

• Further studies are indicated, because it is possible to find additional iron mineralization in a depth of 80 to 100m below fresh rock.

• To complete a scoping study to evaluate the likely mining scenario. Given that the Posse Project is located within close proximity to established iron ore mining and infrastructure will increase the current support for economic extraction.

• Pending the above exercise the current resource data has a number of limitations that could be improved by:

• Infill drilling to increase the geological and domain model.

• New resource estimation using the Ordinary Kriging method (after the infill drilling campaign).

• Additional 'in situ' dry bulk density sampling both 'in situ' material and diamond core.

• To improve on the current QAQC program and check the sample collection methodology.